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Abstract

A new class of differential operators on the simplex is introduced, which define weighted Sobolev
normsandwhoseeigenfunctions are orthogonal polynomialswith respect to Jacobiweights.Theseop-
erators appear naturally in the study of quasi-interpolants which are intermediate between Bernstein–
Durrmeyer operators and orthogonal projections on polynomial subspaces. The quasi-interpolants
satisfy a Voronovskaja-type identity and a Jackson–Favard-type error estimate. These and further
properties follow from a spectral analysis of the differential operators. The results are based on a
pointwise orthogonality relation of Bernstein polynomials that was recently discovered by the au-
thors.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We denote the barycentric coordinates on the standard simplex

Sd = {(x1, . . . , xd) ∈ Rd | 0�x1, . . . , xd �1, x1 + · · · + xd �1}
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by

� := (�0, . . . , �d) = (1− x1 − · · · − xd, x1, . . . , xd).

For any multi-index� = (�0, . . . , �d) ∈ Nd+1
0 , thed-variate basic Bernstein polynomial

B�, of total degreen := |�|, is defined by

B�(x1, . . . , xd) :=
(
n

�

)
�� = n!

�0! · · · �d ! ��0
0 · · · ��d

d . (1.1)

We will use standard multi-index notation and define|�| := �0 + · · · + �d (without taking
absolute values, even if� ∈ Zd+1) and

(
n
�

) := 0 if any of the components�i is negative.
Under this condition we also setB�(x1, . . . , xd) := 0 for all x = (x1, . . . , xd).
Thed-simplexSd hasR := d(d+1)

2 edges which we denote by

eij := ej − ei, 0� i < j�d,

wheree0 := 0 andei , 1� i�d, are the unit coordinate vectors. The directional derivatives

Dij := �
�eij

= eij · ∇

along the edges ofSd constitute the row vector

D := (Dij ; 0� i < j�d),

wherewechoose the lexicographical ordering on the index set{0� i < j�d}. Furthermore,
we define a row vector� of quadratic polynomials by

� := (�i�j ; 0� i < j�d)

with the same lexicographical ordering of its entries. Again we use standard multi-index
notation fork = (kij )0� i<j �d ∈ NR

0 , in order to define the differential operators

Dk :=
∏

0� i<j �d

D
kij
ij

of order|k| and the polynomials

�k :=
∏

0� i<j �d

(�i�j )kij

of degree 2|k|. These notations are needed in order to define the differential operators
considered in this paper. We deal with the general case allowing so-called Jacobi weights

w�(x1, . . . , xd) = (1− x1 − · · · − xd)
�0x

�1
1 · · · x�d

d = ��. (1.2)

Definition 1. Let � = (�0, . . . ,�d) ∈ Rd+1 with �i > −1 for 0� i�d. We define

Uk,� := (−1)k
1

k! �−�Dk
(
���k Dk

)
, k ∈ NR

0 , (1.3)
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and

U �,� := 1

�!
∑
|k|=�

Uk,� for � = 0, 1, . . . (1.4)

If � = 0 we drop the second subscript and writeUk andU � instead. Only formally, for
k = 0 and� = 0,U0,� = U 0,� is the identity.

Remark 1. The operatorU 1,� already appears in the work by Derriennic[11], Berens et
al. [1], Chen et al.[7] for � = 0, and in Berens and Xu[2,3], Ditzian [12], Braess and
Schwab[4] for general�. The latter authors denoteU 1,� asthe Laplacian of the simplex.
Further properties ofUk,�, for |k| = 1, were also studied by Chen and Ditzian[6]. To
our knowledge, the operatorsU �,� with ��2 were not considered before, not even in the
univariate case.

Remark 2. The powersU r
1,� for r�2 were employed by Derriennic[11], Chen et al.[7]

for the definition of theK-functionals

Kr(f, t
r )p := inf {‖f − g‖p + t r‖U r

1g‖p; g ∈ C2r (Sd)}.
From a point of view of polynomial approximation, however, these differential operators
have thedisadvantage that theyonlyannihilate constants. It caneasilybeseen fromdefinition
(1.4) that, in contrast to the powersU r

1,�, the differential operatorU r,� annihilates all
polynomials of degree less thanr. We show that these operators are more natural for the
study of certain quasi-interpolants of Bernstein–Durrmeyer type. For this reason, we prefer
the newly definedK-functionals

K̃r (f, t
r )p := inf {‖f − g‖p + t r‖U rg‖p; g ∈ C2r (Sd)}.

The following identities, the first one a pointwise orthogonality statement, and the second
one its integrated version, were recently proved in[14].

Theorem 1. For n ∈ N0 and�,� ∈ Nd+1
0 , with |�| = |�| = n, we have∑

|k|�n

(n − |k|)!
n! k! �k DkB�(x) DkB�(x) = ��,� B�(x) (1.5)

and

(n + 1)(n+ 2) · · · (n + d)
∑

|k|�n

(n − |k|)!
n! k!

∫
Sd

�k DkB�(x) DkB�(x) dx

= ��,�.

(1.6)

Identity (1.5) is also useful in order to derive an extension of (1.6) including the Jacobi
weight (1.2). For this purpose, we define the weighted inner product

〈f, g〉w� :=
∫
Sd

f (x) g(x) w�(x) dx . (1.7)
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Corollary 1. For n ∈ N, � ∈ Rd+1 with�i > −1 for all 0� i�d, letw�(x) := �� denote
the Jacobi weight(1.2).Then,for �,� ∈ Nd+1

0 with |�| = |�| = n, we have

n∑
�=0

1(
n
�

) 〈U �,�B� , B�〉w� = ��,� 〈1, B�〉w� . (1.8)

Proof. If we multiply identity (1.5) by�� and integrate overSd , we obtain

��,� 〈1, B�〉w� =
∑

|k|�n

(n − |k|)!
n! k!

∫
Sd

�� �k DkB�(x) DkB�(x) dx.

Integration by parts yields

��,� 〈1, B�〉w� =
∑

|k|�n

(−1)|k| (n − |k|)!
n! k!

∫
Sd
Dk

(
�� �k DkB�(x)

)
B�(x) dx

=
∑

|k|�n

(n − |k|)!
n!

∫
Sd

Uk,�B�(x) B�(x) w�(x) dx

=
n∑

�=0

1(
n
�

) 〈U �,�B� , B�〉w� .

This shows that identity (1.8) is valid.�

It may be noted that the restrictions on the exponents in the Jacobi weight are sufficient
in order to have well-defined integrals, and in order to guarantee that integration by parts
does not create boundary terms. In the unweighted case, formula (1.8) reduces to (1.6) since∫
Sd

B�(x) dx = n!/(n + d)!.
This paper is an extended version of the report[15] with Eqs. (4.4)–(4.7) and Section 5

added.

2. The Bernstein–Durrmeyer operator and quasi-interpolants

TheBernstein–Durrmeyer operator of order nwas introduced by Durrmeyer[13] and
Derriennic[8], and the modified operator with respect to the Jacobi weightw� was defined
by Berens and Xu[2,3], Ditzian[12]. For n∈ N0, 1�p�∞, and� ∈ Rd+1 with �i > −1
for all 0� i�d, the Jacobi-type Bernstein–Durrmeyer operator is given by

Mn,� : Lp
w�
(Sd) → P n, f �→

∑
|�|=n

〈f,B�〉w�

〈1, B�〉w�

B�. (2.1)

Here the weighted inner product (1.7) is employed, and the domain of the operator is a
weightedLp-space, with 1�p�∞, consisting of all measurable functions onSd with

‖f ‖p,w� :=
( ∫

Sd
|f (x)|p w�(x) dx

)1/p
< ∞, 1�p < ∞
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and the usual interpretation forp = ∞. P n denotes the space of algebraic polynomials
of total degree at mostn. This operator is very well understood. Some of its properties are
listed by Derriennic[10], see also Ditzian[12], such as
• positivity:Mn,�f �0 for everyf �0,
• reproduction of constants:Mn,�p = p for p ∈ P 0,
• contractivity:‖Mn,�f ‖p,w� �‖f ‖p,w� for everyf ∈ L

p
w�(S

d).
We are going to generalize some of its properties to more general quasi-interpolant oper-

ators. The spectral properties ofMn,� can be described bymeans of the standard orthogonal
decomposition of the Hilbert spaceH := L2

w�
(Sd) in terms of spaces of orthogonal poly-

nomials,

L2
w�
(Sd) =

∞∑
m=0

E m,�

with E 0,� := P 0 and E m,� := P m ∩ P ⊥
m−1 for m > 0 .

Here, orthogonality refers to the weighted inner product (1.7). It is clear thatMn,� is a
bounded self-adjoint operator onH . The following result by Derriennic[10] (for � =
0), Berens and Xu[2,3] and Ditzian[12] (for general Jacobi weight) gives a complete
characterization of its spectral properties.

Theorem A. For all n ∈ N0, the spaceE m,�, m�0, is an eigenspace ofMn,�, and
Mn,�pm = �n,m,� pm for all polynomialspm ∈ E m,�, where

�n,m,� :=


n!
(n − m)!

�(n + d + |�| + 1)

�(n + d + |�| + m + 1)
for n�m,

0 for n < m.

(2.2)

Note that forf = ∑∞
m=0pm, with pm ∈ E m,�, the operatorMn,� takes the expression

Mn,�(f ) =
n∑

m=0

�n,m,� pm. (2.3)

In particular,Mn,� defines an isomorphism of the spaceP m of all polynomials of degree
at mostm, if m�n. For later reference we give the following expansion:

Lemma 1. For n�m we have

�−1
n,m,� =

m∑
�=0

	�,m,�

n(n − 1) · · · (n − � + 1)
(2.4)

with

	�,m,� :=
(
m

�

)
�(d + m + |�| + �)

�(d + m + |�|) =
(
m

�

) �−1∏
j=0

(j + d + m + |�|) . (2.5)
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Proof.Multiplying Eq. (2.4) byn!/(n − m)! leads to the equivalent identity

m∏
i=1

(n + d + |�| + i) =
m∑
�=0

(
m

�

)
�(d + m + |�| + �)

�(d + m + |�|)
m−1∏
j=�

(n − j) .

This identity follows from the polynomial interpolation formula for


m,�(x) :=
m∏
i=1

(x + d + |�| + i) = �(x + d + |�| + m + 1)

�(x + d + |�| + 1)

=
m∑
�=0

[y0, . . . , y� | 
m,�]
�−1∏
i=0

(x − yi)

based on the divided differences with respect to the nodesyi = m − 1− i, i = 0, . . . , m.
By straightforward calculation of the Newton scheme we find

[y0, . . . , y� | 
m,�] =
(
m

�

)
�(d + 2m + |�| − �)

�(d + m + |�|) = 	m−�,m,�,

� = 0, . . . , m. �

Next we show that the combination of Theorem 1 and Theorem A provides an explicit
formulation for the inverse ofMn,�|P n

as the restriction of a bounded self-adjoint operator
onH which mapsH ontoP n. This operator can then be used in order to define quasi-
interpolants onH or Lp

w�(S
d). As a first step in this direction, we prove the following

Lemma 2. The differential operatorsUk,�, k ∈ NR
0 , andU �,�, ��0, are densely defined

symmetric operators on theHilbert spaceH .They commutewith the Bernstein–Durrmeyer
operatorMn,�, n ∈ N0.

Proof. The operatorUk,� is defined for allf ∈ C∞(Sd) which is a dense subspace ofH .
Integration by parts shows that

〈Uk,�f, g〉w� = 〈f,Uk,�g〉w� , f, g ∈ C∞(Sd),

which proves thatUk,� is symmetric. The same properties are valid for the operatorU �,�.
It is clear from definition (1.3) thatUk,� maps the spaceP m into itself. Hence, for

p ∈ E m,� andq ∈ P m−1, we find

〈Uk,�p, q〉w� = 〈p, Uk,�q〉w� = 0.

This shows thatUk,� mapsE m,� into itself aswell. Therefore, we conclude fromTheoremA
thatUk,� commutes withMn,�. �

Theorem 1 allows us to describe the inverse of the Bernstein–Durrmeyer operatorMn,�,
restricted toP n, in terms of the differential operatorsU �,�, 0���n.
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Theorem 2. For anyn ∈ N let

Yn,� : C2n(Sd) → P n, f �→
n∑

�=0

1(
n
�

) U �,�f. (2.6)

ThenYn,� is a symmetric operator,and for allp ∈ P n, we have

Mn,�Yn,�p = Yn,�Mn,�p = p. (2.7)

Proof. By Lemma 2,Yn,� is symmetric. In order to prove identity (2.7), we expandp in
terms of the Bernstein polynomial basis. As a consequence of Corollary 1, we obtain

p =
n∑

�=0

1(
n
�

) Mn,�(U �,�p),

which givesMn,�Yn,�p = p. Lemma 2 also shows thatYn,�Mn,�p = p. �

In the previous paper[14], the last two authors have introduced quasi-interpolants which
are between the Bernstein–Durrmeyer operatorMn := Mn,0 and the orthogonal projector
onto P n. By employing the differential operators again and by introducing the Jacobi
weight into these operators, we can define theBernstein–Durrmeyer quasi-interpolant of
order (r, n), 0�r�n, with Jacobi weightw�, by

M(r)
n,� : Lp

w�
(Sd) → P n, f �→

r∑
�=0

1(
n
�

) U �,�(Mn,�f ). (2.8)

Apparently,M(r)
n,� is a bounded linear operator, which is self-adjoint ifp = 2. Moreover,

M
(0)
n,� = Mn,�, while M

(n)
n,� is the orthogonal projection ontoP n. Theorem 2 recovers

the statement (already proved in[14] for the unweighted case) thatM(r)
n,� reproduces all

polynomials fromP r .

Remark 3. Different operators of Bernstein–Durrmeyer type of orderr were constructed
by Derriennic[11] for the case� = 0. These operators have the form

Q(r)
n f := Mnf +

r∑
�=1

�n,� U �
1(Mnf ),

where�n,1 := ( 1
n+1 + · · · + 1

n+d
)/d and�n,� is given by a complicated recursive defini-

tion. Note that the powers of the operatorU 1 appear in this definition. Moreover, forr = 1
already, the operatorQ(1)

n does not reproduce linear polynomials. Hence, our quasi-
interpolantsM(r)

n,� are different from these operators. They are also different to Sablon-
nière’s quasi-interpolants [16,17].
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3. A Voronovskaja-type result

The following result of Voronovskaja type enlightens the role that is played by the dif-
ferential operatorU 1,�. The result for� = 0 appeared in Derriennic[8] for d = 1 and in
Derriennic[9] for d > 1. The case of general� was given in Berens and Xu[2] (d = 1)
and Ditzian[12, Remark 4.2](d > 1).

Theorem B.For all n ∈ N0 andf ∈ C2(Sd) we have

lim
n→∞ n

(
f (x) − Mn,�f (x)

) = U 1,�f (x). (3.1)

Remark 4. Ditzian uses the factor�n,� := ∑∞
k=n+1(k(k+d+|�|))−1 insteadofn. It is easy

to prove that limn→∞ �n,�/n = 1, and therefore identity (3.1) is an equivalent formulation
of his result.

The following extension of Theorem B refers to our quasi-interpolantsM
(r)
n,� in (2.8).

This result is new even ford = 1 and� = 0.

Theorem 3. For r ∈ N0 andf ∈ C2(r+1)(Sd), we have

lim
n→∞

(
n

r + 1

) (
f − M(r)

n,�f
)
(x) = U r+1,�f (x), x ∈ Sd,

and the convergence is uniform with respect tox.

It is easy to prove the theorem for polynomials. Since this result will be employed in the
proof of Theorem 4 below, we state it separately. The full proof of Theorem 3 will be given
in Section 5.

Lemma 3. Theorem3 holds true for polynomials f.

Proof. It is sufficient to show the result for any basis of the polynomial space. Letf =
pm ∈ E m,�. In casem�r�n we havepm = M

(r)
n,�pm andU r+1,�pm = 0, so that the

statement holds trivially. In caser < m�n we have, by Theorem 2 and Eq. (2.8),

�−1
n,m,�

(
pm − M(r)

n,�pm

) =
m∑

�=r+1

1(
n
�

) U �,�pm,

whence

�−1
n,m,�

(
n

r + 1

) (
pm − M(r)

n,�pm

) = U r+1,�pm +
m∑

�=r+2

(
n

r+1

)(
n
�

) U �,�pm .

Since

lim
n→∞ �n,m,� = 1 and lim

n→∞

(
n

r+1

)(
n
�

) = 0 for � = r + 2, . . . , m,

our result follows. �
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4. Spectral analysis

Wehaveshown inLemma2 that thespacesE m,� are invariant subspacesof thedifferential
operatorsUk,� andU �,�, respectively, for anyk ∈ NR

0 and� ∈ N0. We now verify that
these are also eigenspaces of all operatorsU �,�, thus extending the result

U 1,� pm = m(m + d + |�|) pm, pm ∈ E m,�, (4.1)

which for � = 0 is due to Derriennic[11] and Berens et al.[1], and for general� due to
Berens and Xu[2] (for d = 1), and Ditzian[12] (for d > 1).

Theorem 4. For all r,m ∈ N0 andpm ∈ E m,� we have

U r,� pm = 	r,m,�

r! pm (4.2)

with 	r,m,� as defined in Lemma1. In particular,	r,m,� = 0 for r > m.

Proof.We use induction onr and employ an idea used in the proof of (4.1) in Chen and
Ditzian [5]. The result is trivial forr = 0 and for 0�m < r. Let us assume that the result
is true for all 0� i�r − 1 and letm ∈ N0, r�m, andpm ∈ E m,�.
The Voronovskaja result of Lemma 3 yields

lim
n→∞

(
n

r

)
(pm − M(r−1)

n,� pm) = U r,�pm.

We insert (2.8) and use the induction hypothesis to obtain

U r,�pm = lim
n→∞

(
n

r

)(
pm −

r−1∑
�=0

1(
n
�

) U �,�(Mn,�pm)
)

= lim
n→∞

(
n

r

)(
1− �n,m,�

r−1∑
�=0

1(
n
�

) 	�,m,�

�!
)
pm.

By Lemma 1 we find

U r,�pm = lim
n→∞ �n,m,�

m∑
�=r

(
n
r

)(
n
�

) 	�,m,�

�! pm = 	r,m,�

r! pm.

This completes the induction. �

Remark 5. For� = 0, we obtain from Theorem 4 that

U rpm =
(
m

r

) (
d + m + r − 1

r

)
pm , pm ∈ E m, (4.3)

which is a more compact formula for the eigenvalues ofU r .
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Remark 6. The following identities for the differential operatorsU r,� follow from Theo-
rem 4. For allr�0 we have the recurrence relation

U r+1,� f = 1

(r + 1)2
[U 1,� − r(r + d + |�|) I ]U r,� f, f ∈ C2r+2(Sd), (4.4)

and the product formula

U r,�f = 1

(r!)2
r−1∏
m=0

(U 1,� − m(m + d + |�|)I )f, f ∈ C2r (Sd). (4.5)

The proof of (4.5) for� = 0 was first communicated to us by M. Felten. The analogous
argument for general� is as follows. Simple calculations show that, form�0, we have

	0,m,� = 1 and

	r+1,m,� = (m − r)(m + d + |�| + r)

r + 1
	r,m,�

= m(m + d + |�|) − r(r + d + |�|)
r + 1

	r,m,�, 0�r < m.

(4.6)

This yields (4.4), via (4.2) and (4.1), first forf = pm ∈ E m,�, andhence for all polynomials.
The identity (4.4) follows for allf ∈ C2r+2(Sd)by adensity argument, and (4.5) is obtained
by induction.

For later use we also describe the spectral properties of the quasi-interpolantsM
(r)
n,�. The

following statement follows from Theorem A, Theorem 4, Lemma 1 and the fact that the
operatorsMn,� andU l,� commute.

Lemma 4. For all n,m, r ∈ N0, 0�r�n, the spacesE m,� are eigenspacesof the operator

M
(r)
n,�. Namely,for pm ∈ E m,� we have

M(r)
n,� pm = �(r)n,m,� pm

with the eigenvalues

�(r)n,m,� = �n,m,�

r∑
�=0

1(
n
�

) 	�,m,�

�!

=


0 if m > n,

1 if n�r�m,

1− �n,m,�

m∑
�=r+1

1(
n
�

) 	�,m,�

�! if r < m�n.

(4.7)

5. Approximation order

In this section we study approximation properties of the quasi-interpolantsM
(r)
n,�, 0�r

�n. Our first basic result is
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Lemma 5. Letf ∈ C2r (Sd). ThenM(r)
n,�f → f asn → ∞, uniformly onSd .

Proof. Using (2.8) and Lemma 2, we have

M(r)
n,�f = Mn,�f +

r∑
�=1

1(
n
�

)Mn,�(U �,�f ), f ∈ C2r (Sd),

whereMn,� is the usual Bernstein–Durrmeyer operator (2.1). This representation and the
contractivity property ofMn,� yield the estimate

‖M(r)
n,�f − f ‖�‖Mn,�f − f ‖ +

r∑
�=1

1(
n
�

)‖U �,�f ‖,

with ‖ · ‖ = ‖ · ‖∞ the maximum norm onSd . It is well known that‖Mn,�f − f ‖ → 0
asn → ∞ for all continuous functions f. Since‖U �,�f ‖, � = 1, . . . , r, are bounded, the
result follows. �

Before we discuss the approximation order for our quasi-interpolants, we establish the
following useful relation for the eigenvalues�(r)n,m,�. For r = 0, this relation was proved
in Derriennic[11] and Berens et al.[1] (for � = 0), Berens and Xu[2] (for d = 1), and
Ditzian [12]. For r >0, this relation is new even in the one-dimensional case.

Lemma 6. For n,m, r ∈ N0, 0�r�n, the following difference equation holds true:

�(r)n,m,� − �(r)n−1,m,� = r + 1

n + d + |�|
1(
n

r+1

) 	r+1,m,�

(r + 1)! �n,m,� . (5.1)

Proof. From (4.7), (2.2) and by simple calculations, we obtain

�(r)n,m,� − �(r)n−1,m,� =
r∑

�=0

	�,m,�

�!

[
�n,m,�(

n
�

) − �n−1,m,�(
n−1
�

) ]

=
r∑

�=0

	�,m,�

�!
[
1− (n − m)(n + d + m + |�|)

(n − �)(n + d + |�|)
] �n,m,�(

n
�

)
=

r∑
�=0

	�,m,�

�!
[
(m − �)(m + d + |�| + �) − (n − �)�

(n − �)(n + d + |�|)
] �n,m,�(

n
�

) .

Eq. (4.6) yields

�(r)n,m,� − �(r)n−1,m,� = �n,m,�

n + d + |�|
r∑

�=0

[
(� + 1)	�+1,m,�

(� + 1)!( n
�+1

) − �	�,m,�

�!(n
�

) ]
,
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and an obvious cancellation gives (5.1).�

This lemma is the basis for a telescoping argument in order to find an error formula for
the quasi-interpolant. Eq. (5.1) implies

M(r)
n,� f − M

(r)
n−1,� f = r + 1

n + d + |�|
(

n

r + 1

)−1

U r+1,�Mn,� f (5.2)

for f ∈ E m and, by density, for allf ∈ L
p
w�(S

d). Note that the operatorsM(r)
n,�, M

(r)
n−1,�

andMn,� mapLp
w�(S

d) ontoP n. SinceP n is finite dimensional, all operators in (5.2) are
bounded onLp

w�(S
d). Moreover, for smooth functions we may interchange the differential

operator and the Bernstein–Durrmeyer operator again. This leads to our main result in this
section.

Theorem 5. If f ∈ C2r+2(Sd), then

f − M
(r)
n,�f =

∞∑
�=n+1

r + 1

� + d + |�|
(

�

r + 1

)−1

M�,�(U r+1,�f ),

f ∈ C2r+2(Sd),

(5.3)

where the infinite series converges absolutely and uniformly onSd . Consequently,for
1�p�∞, we have

‖f − M(r)
n,�f ‖p� Cr,d,n,�(

n
r+1

) ‖U r+1,�f ‖p, (5.4)

where

Cr,d,n,� :=
∞∑

�=n+1

r + 1

� + d + |�|

(
n

r+1

)(
�

r+1

) → 1, n → ∞, (5.5)

for fixed r,d and�.

Proof. Identity (5.3) follows from (5.2) andLemma5bywriting the left-hand side of (5.3) as
a telescoping series. By making use of the triangle inequality and the contractivity ofMn,�,
we obtain the absolute and uniform convergence of the series in (5.3), and also inequality
(5.4), where the constantsCr,d,n,� are defined as in (5.5). For the reader’s convenience
we verify the asymptotic behavior of these constants. For this purpose, we introduce the
notations

�
d,n,�

:= min

{
1,

n + 2

n + 1+ d + |�|
}
,

�d,n,� := max

{
1,

n + 2

n + 1+ d + |�|
}
.
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We readily obtain that

�
d,n,�

� � + 1

� + d + |�| ��d,n,�, ��n + 1,

and this gives

Cr,d,n,�

(r + 1)!( n
r+1

) =
∞∑

�=n+1

r + 1

� + d + |�|
r∏

j=0

1

� − j ��d,n,�

��
d,n,�


∞∑

�=n+1

(r + 1)
r+1∏
j=0

1

� + 1− j
.

The last series equals

∞∑
�=n+1

 r∏
j=0

1

� − j
−

r∏
j=0

1

� + 1− j

 =
r∏

j=0

1

n + 1− j
= 1

(r + 1)!(n+1
r+1

) .
The result limn→∞ Cr,d,n,� = 1 follows directly. �

Inequality (5.4) is a so-called direct theorem of Jackson–Favard-type. Based on (5.3), we
are now able to complete the proof of Theorem 3.

Proof of Theorem 3.Identity (5.3) implies(
n

r+1

)(
f − M

(r)
n,�f

) − U r+1,�f

= (
Cr,d,n,�U r+1,�f − U r+1,�f

)
+

∞∑
�=n+1

r + 1

� + d + |�|

(
n

r+1

)(
�

r+1

)(
M�,�(U r+1,�f ) − U r+1,�f

)
with the constantCr,d,n,� as in (5.5). The first term on the right-hand side converges to zero
asn → ∞, by (5.5), and the second term converges to zero as well, since∣∣∣∣∣

∣∣∣∣∣
∞∑

�=n+1

r + 1

� + d + |�|

(
n

r+1

)(
�

r+1

)(
M�,�(U r+1,�f ) − U r+1,�f

)∣∣∣∣∣
∣∣∣∣∣

�Cr,d,n,� sup
�>n

‖M�,�(U r+1,�f ) − U r+1,�f ‖

and

lim
n→∞ ‖Mn,�(U r+1,�f ) − U r+1,�f ‖∞ = 0, f ∈ C2r+2(Sd).

This completes the proof of Theorem 3 for smoothf. �

We conclude the paper with a generalization of the direct and inverse theorem by Braess
and Schwab[4, Theorem 3.3]for the Hilbert spaceH = L2

w�
(Sd). This is an easier
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argument, and is based on Theorem 4 alone. Here we make use of the following Sobolev-
type semi-norm|f |�,� of integer order��0, where

|f |2�,� :=
∞∑

m=0

〈U �,�pm, pm〉w� = 1

�!
∞∑

m=0

	�,m,�〈pm, pm〉w�

andf = ∑∞
m=0pm is the orthogonal decomposition as in Theorem A. The corresponding

smoothness spaces are given by

H k
� := {f ∈ L2

w�
(Sd) | |f |�,� < ∞ for � = 0, . . . , k}, k ∈ N.

Theorem 6. Letk���0 be integers.
(a) Direct result:For f ∈ H k

� andn ∈ N0, we have

inf
p∈P n

|f − p|2�,� � k!
�! cn,k,� |f |2k,�,

wherecn,k,� = supm�n+1
	�,m,�
	k,m,�

= 	�,n+1,�
	k,n+1,�

.

(b) Converse result:For n ∈ N0 andp ∈ P n, we have

|p|2k,� � �!
k! dn,k,� |p|2�,�,

wheredn,k,� = maxm=0,...,n
	k,m,�
	�,m,�

= 	k,n,�
	�,n,�

.

Apparently, by inspection of (2.5), we obtain

cn,k,� = O (n−2(k−�)) and dn,k,� = O (n2(k−�)) .
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