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Abstract

A new class of differential operators on the simplex is introduced, which define weighted Sobolev
norms and whose eigenfunctions are orthogonal polynomials with respect to Jacobi weights. These op-
erators appear naturally in the study of quasi-interpolants which are intermediate between Bernstein—
Durrmeyer operators and orthogonal projections on polynomial subspaces. The quasi-interpolants
satisfy a Voronovskaja-type identity and a Jackson—Favard-type error estimate. These and further
properties follow from a spectral analysis of the differential operators. The results are based on a
pointwise orthogonality relation of Bernstein polynomials that was recently discovered by the au-
thors.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We denote the barycentric coordinates on the standard simplex
ST = {1, ... x0) € RY)0<xg, oo, g <L, 1+ -+ xa <)
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by
M=o, ..., 2g) =A —x1— - — X4, X1, ..., Xd)-
For any multi-indexx = (o, ..., %g) € Ng“, the d-variate basic Bernstein polynomial

By, of total degree: := |a/, is defined by

n n!
BO(()Cl, ...,)Cd) = (a) )\‘O( = m )%O)Lsd (11)

We will use standard multi-index notation and defimg:= og + - - - + oy (without taking

absolute values, evendf € Z¢*+1) and (Z) := 0 if any of the components; is negative.

Under this condition we also sét,(x1, ..., xz) :=0forallx = (x1, ..., x4).
Thed-simplexs? hasr := 4“2 edges which we denote by

€ij :=ej—e,-, 0<i<j<d,

whereeg := 0 ande;, 1<i <d, are the unit coordinate vectors. The directional derivatives

Dij = =€ij-v

Oeij
along the edges af¢ constitute the row vector
D := (Djj; 0<i < j<d),

where we choose the lexicographical ordering onthe indg@sét < j <d}. Furthermore,
we define a row vectan of quadratic polynomials by

A= (Ailj; 0<i < j<d)

with the same lexicographical ordering of its entries. Again we use standard multi-index
notation fork = (k;j)o<i<j<da € Ng, in order to define the differential operators

Dk — 1_[ lej’l
0<i<j<d
of order|k| and the polynomials
A= [ Gaap
0<i<j<d

of degree Xk|. These notations are needed in order to define the differential operators
considered in this paper. We deal with the general case allowing so-called Jacobi weights

wu(xy, ..., xg) =L —x1—- — xd)ﬂoxfl . -x‘l;d = A 1.2)
Definition 1. Letu = (ug, ..., ;) € R4 with g, > —1 for 0<i <d. We define

1
Uiep i= (~1f o A7+DK ()J‘Ak Dk), k e NE, (1.3)
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and

1
U= > Uky for ¢=0.1,... (1.4)
" k|=¢

If © = 0 we drop the second subscript and wilifg andi/ , instead. Only formally, for
k =0andt =0, Up,, = U o, is the identity.

Remark 1. The operatoi/ ; , already appears in the work by Derrienfild], Berens et
al. [1], Chen et al[7] for 1 = 0, and in Berens and X[2,3], Ditzian [12], Braess and
Schwab[4] for generalu. The latter authors denoté ,, asthe Laplacian of the simplex.
Further properties oty ,, for |k| = 1, were also studied by Chen and Ditzig}. To
our knowledge, the operatais, , with £>>2 were not considered before, not even in the
univariate case.

Remark 2. The powers/{ 7 , for r >2 were employed by Derrienn[t1], Chen et al[7]
for the definition of thek-functionals

Ko (fot")p = inf{lf —gll, + 11U gllp; g € C¥(SD).

From a point of view of polynomial approximation, however, these differential operators
have the disadvantage thatthey only annihilate constants. It can easily be seen from definition
(1.4) that, in contrast to the powe&;s’,u, the differential operatot/ ., annihilates all
polynomials of degree less thanWe show that these operators are more natural for the
study of certain quasi-interpolants of Bernstein—Durrmeyer type. For this reason, we prefer
the newly defined-functionals

Ko (f, 1)y =inH{Ilf = gll, + 171U rgll p; g € C¥ (5.

The following identities, the first one a pointwise orthogonality statement, and the second
one its integrated version, were recently proveflLif].

Theorem 1. For n € Ng anda, € N8 ™, with |a| = | 8] = n, we have

3 ("n_’—lf"')' AK DK B,(x) DXB(x) = 3,5 Bu(X) (1.5)
k| <n o
and
n+Dn+2)--(n+d) Y (n— Ik AX DKB,(x) DXBg(x) dx
n! k! 5d * b (1.6)

k| <n

= 0y -

Identity (1.5) is also useful in order to derive an extension of (1.6) including the Jacobi
weight (1.2). For this purpose, we define the weighted inner product

(f, ), = /S 00 800 w0 dx. (1.7)



62 E. Berdysheva et al. / Journal of Approximation Theory 131 (2004) 59-73

Corollary 1. Forn e N, u € R with i, > —1forall 0<i <d, letw,(x) := A" denote
the Jacobi weigh¢l.2). Thenfor «, f € Nd+1 with |«| = || = n, we have

n

1
Z U /é,,uBﬁ ) Boc)wﬂ = 50(,[3 (1, Ba)wﬂ . (1.8)

= ()

Proof. If we multiply identity (1.5) byA* and integrate oves“, we obtain

Oup (1 Bu, = > w / M AK DK B,(x) DXBj(x) dx.

Integration by parts yields
Oup (L Biuw, = D (= Dk == =

K| <n

_ Z (n—lkl) /U uBp(X) B(X) wy(X) dX

|k\<n
= Z (,lT) (Z/[ Z,;LB/} s Bot>wu

This shows that identity (1.8) is valid.(J

kD!

k k ~k
e P ()J‘A D Bﬁ(x)) By (X) dx

It may be noted that the restrictions on the exponents in the Jacobi weight are sufficient
in order to have well-defined integrals, and in order to guarantee that integration by parts
does not create boundary terms. In the unweighted case, formula (1.8) reduces to (1.6) since
fga B2(X) dx = n!/(n + d)!.

This paper is an extended version of the repts] with Eqs. (4.4)—(4.7) and Section 5
added.

2. The Bernstein—Durrmeyer operator and quasi-interpolants

The Bernstein—Durrmeyer operator of orderwas introduced by Durrmey¢t3] and
Derriennic[8], and the modified operator with respect to the Jacobi weightas defined
by Berens and X{,3], Ditzian[12]. For n € Np, 1< p <oo, andu € R4 with g, > —1
for all 0<i <d, the Jacobi-type Bernstein—Durrmeyer operator is given by

(fv Ba)w,,

B, 2.1
(1, B)u, 1)

My, Lg)ﬂ(Sd)—>77,,, f— Z

la|=n

Here the weighted inner product (1.7) is employed, and the domain of the operator is a
weightedZ”-space, with K p < oo, consisting of all measurable functions §hwith

] » 1/p
= ([ 1FOO w00 dx) 7 < 00, 1<p < o0



E. Berdysheva et al. / Journal of Approximation Theory 131 (2004) 59-73 63

and the usual interpretation fgr = co. P, denotes the space of algebraic polynomials
of total degree at most. This operator is very well understood. Some of its properties are
listed by Derrienni¢10], see also Ditziafil2], such as

e positivity: M, , f >0 for every f >0,

e reproduction of constantds, ,p = p for p € P,

o contractivity: | My fl p.w, < I fll p.w, fOr every f e Lﬁ)ﬂ(S").

We are going to generalize some of its properties to more general quasi-interpolant oper-
ators. The spectral propertiesif, , can be described by means of the standard orthogonal
decomposition of the Hilbert spagé := Liﬂ(Sd) in terms of spaces of orthogonal poly-
nomials,

)
L, (8D =2 Em
m=0

with Egu:=Po and €, :=P,NP;_, for m>0.

Here, orthogonality refers to the weighted inner product (1.7). It is clearMhat is a
bounded self-adjoint operator ¢t . The following result by Derrienni§l0] (for u =

0), Berens and Xui2,3] and Ditzian[12] (for general Jacobi weight) gives a complete
characterization of its spectral properties.

Theorem A. For all n € Ny, the spacef ,, ,, m>0, is an eigenspace a#f, ,, and
My, Pm = Vnm,u Pm for all polynomialsp,, € € ., where

n! Tet+d+lW+D

’yn,m,,u = (n—m)! I'(n+d+ |:u| +m+1) (22)
0 forn < m.

Note that forf = Y o pm, With p,, € & .4, the operatoM,, , takes the expression

n

Mn,,u(f) = Z Vn,m,u Pm- (23)

m=0

In particular,M, , defines an isomorphism of the sp&gesg, of all polynomials of degree
at mostm, if m <n. For later reference we give the following expansion:

Lemma 1. For n >m we have

m

1 O¢,m,u
_ 2.4
yn,m,,u Zn(n_l)(n—ﬁ—‘rl) ( )

=0
with
-1
m\ I'(d+m+ |u| +0) m .
mo = = d . 2.5
o= (3) “ratman = (1) [u+asmsmw. @9

j=0
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Proof. Multiplying Eq. (2.4) byn!/(n — m)! leads to the equivalent identity

m m m—1
, m\ I'(d +m~+ |l +£) ,
rd A+ |pl+i) = - -
[Tor+d-+iui-+ e§_o<£) ) J_le(n y

This identity follows from the polynomial interpolation formula for

I(x+d+|pl+m+1)
I(x+d+|ul+1)

O () =[x +d + |l +i) =
i=1

m -1
=) oo ye lomyd [T =m0
(=0 i=0
based on the divided differences with respect to the npdesm —1—i,i =0, ..., m.

By straightforward calculation of the Newton scheme we find
m)F(d—l—Zm—i—l/ll -0
¢) Td+m+u)

[y0,~~7y13|wm,u]=<
£=0,...,m. |

m—~e,m, s

Next we show that the combination of Theorem 1 and Theorem A provides an explicit
formulation for the inverse a¥/, ,|p , as the restriction of a bounded self-adjoint operator
onH which mapsH ontoP ,. This operator can then be used in order to define quasi-
interpolants or+{ or Lﬁ,M(Sd). As a first step in this direction, we prove the following

Lemma 2. The differential operator#/x ,,, k € Ng, andif ¢, £ >0, are densely defined
symmetric operators on the Hilbert spade. They commute with the Bernstein—Durrmeyer
operatorM, ,, n € No.

Proof. The operatolUy , is defined for allf e C*(8%) which is a dense subspace?f.
Integration by parts shows that

Ukt 8w, = (f- Uku&)uw,.  f.g € C(SY,

which proves thaty, is symmetric. The same properties are valid for the opet#toy.
It is clear from definition (1.3) thalk, , maps the spac® ,, into itself. Hence, for
pe&mpuandg € P,,_1, wefind

(Uk.ups @)w, = (P> Uk pq)w, = 0.
This shows thalik,, mapst ,, , into itself as well. Therefore, we conclude from Theorem A
thatUk , commutes with,, ,. [J

Theorem 1 allows us to describe the inverse of the Bernstein—Durrmeyer opdyator
restricted taP ,,, in terms of the differential operatots, ,, 0< £ <n.
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Theorem 2. For anyn € N let

n

1
You:CESH > Pu fr) @) Uepf. (2.6)
=0\t

Theny, , is a symmetric operatognd for all p € P ,,, we have

Mn,,uyn,,up = Yn,uMn,,uP =P (2.7)

Proof. By Lemma 2,Y, ,, is symmetric. In order to prove identity (2.7), we expanih
terms of the Bernstein polynomial basis. As a consequence of Corollary 1, we obtain

n

1
P = Z m Mn,u(u Z,up)a

=0 \{

which givesM,, Y, ,p = p. Lemma 2 also shows th&}, , M, ,p = p. [

In the previous papdi4], the last two authors have introduced quasi-interpolants which
are between the Bernstein—Durrmeyer operdpr:= M, o and the orthogonal projector
onto P ,. By employing the differential operators again and by introducing the Jacobi
weight into these operators, we can define Bleenstein—Durrmeyer quasi-interpolant of
order (r, n), 0<r <n, with Jacobi weighiv,,, by

"1
MO LE (S > P, fre ZO ) U oy (My i f). (2.8)
(=

Apparently,M,SfL is a bounded linear operator, which is self-adjoinp if= 2. Moreover,
M,(l% = M, ,, while M,E",i is the orthogonal projection ont® ,. Theorem 2 recovers

the statement (already proved[i¥] for the unweighted case) thM,ﬁf L reproduces all
polynomials fronfP ...

Remark 3. Different operators of Bernstein—Durrmeyer type of orderere constructed
by Derriennic[11] for the case: = 0. These operators have the form

OV fi=Muf + ) stn e UM, ),

(=1

whereo,, 1 1= (Wll + .- ﬁ)/d ando, ¢ is given by a complicated recursive defini-
tion. Note that the powers of the operatoi appear in this definition. Moreover, for= 1
already, the operaton,l) does not reproduce linear polynomials. Hence, our quasi-
interpolantsM,ﬁf L are different from these operators. They are also different to Sablon-

niére’s quasi-interpolants [16,17].
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3. A Voronovskaja-type result

The following result of Voronovskaja type enlightens the role that is played by the dif-
ferential operatot/ ; ;. The result foru = 0 appeared in Derrienn{8] for d = 1 and in
Derriennic[9] for d > 1. The case of generalwas given in Berens and X2] (d = 1)
and Ditzian[12, Remark 4.2]d > 1).

Theorem B.For all n € Ng and f € C2(5%) we have

Jim o (f () = My f (0)) = U 1] (2). (3.1)

Remark 4. Ditzian usesthe factoy, , := Z,fi,l+1(k(k+d+|u|))—1 instead of. Itis easy
to prove that lim _, o v, ,/n = 1, and therefore identity (3.1) is an equivalent formulation
of his result.

The following extension of Theorem B refers to our quasi—interpolani’ﬁt in (2.8).
This result is new even faf = 1 andu = 0.

Theorem 3. Forr € Ngand f € C2"+D(59), we have

lim ( " 1) (f =MD F)00 =U i1, f(X). x €87,

n—>o0 \r +
and the convergence is uniform with respeckto
Itis easy to prove the theorem for polynomials. Since this result will be employed in the

proof of Theorem 4 below, we state it separately. The full proof of Theorem 3 will be given
in Section 5.

Lemma 3. Theorens holds true for polynomials f.

Proof. It is sufficient to show the result for any basis of the polynomial space.fLet
Pm € & m . In casem <r<n we havep,, = M,(:I,)lpm andif ,y1,.pm = 0, so that the
statement holds trivially. In case< m <n we have, by Theorem 2 and Eq. (2.8),

m
1
”/;,]y-n”u (pm - M,ET/)me) = Z m Z/[K,,upmy
l=r+1 \t
whence
n = ( nl)
V;,:;Ln,,u ( + l) (pm - M,E’me) = Ur-',—l,upm + Z % Z/{Z,,upm .
r l=r+2 (Z)
Since

: ()
A T =1 and - I oy

L

=0 for £=r+2,...,m,

our result follows. O
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4. Spectral analysis

We have shownin Lemma 2 that the spa€gs,, are invariant subspaces of the differential

operatorsUx, , andi{ ¢ ,, respectively, for ank e N§ and¢ € Np. We now verify that
these are also eigenspaces of all operdiorg, thus extending the result

Ul,,u pm =m@m +d + ) pm, Pm e(c/‘m,,uv (4.1)

which for u = 0 is due to Derrienni¢l1] and Berens et a[1], and for general due to
Berens and X{2] (for d = 1), and Ditzian[12] (for d > 1).

Theorem 4. For all r,m € No and p,, € € ,,,, we have

O'rm,u

Pm (4.2)

with g,.,, , as defined in Lemm& In particular, o,.,, ,, = O forr > m.

ur,u Pm =

Proof. We use induction om and employ an idea used in the proof of (4.1) in Chen and
Ditzian [5]. The result is trivial forr = 0 and for 0<m < r. Let us assume that the result
is true for all 0<i <r — 1 and letm € Ng, » <m, andp,, € € ;5 ...

The Voronovskaja result of Lemma 3 yields

. n
lim ( )(p — MY P pw) =U ypi.
n—oo \r

We insert (2.8) and use the induction hypothesis to obtain

r—1

1
U, uPm = nleoo <I:) (Pm - Zgo (T) u e,u(Mn,qu))
r—1

. l O'( Otm,u
=nll—>moo<>( /”’"UZ I ) Pm-

By Lemma 1 we find

m
. O'Z m [J Or,m,u
U = lim E = .
r,pPm s Yn.m.pu ; 0 7! DPm

This completes the induction. [

Remark 5. Foru = 0, we obtain from Theorem 4 that

d -1
Mrpm=<m>< o )pm, Pm € E m. 4.3)
r

r

which is a more compact formula for the eigenvalue# f
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Remark 6. The following identities for the differential operatdss, , follow from Theo-
rem 4. For all- >0 we have the recurrence relation

1
Uririf = GrgpUan—re+d 1) U f. [ (s, (4.4)
and the product formula

1 r—1 .
Urnf = Eo(u 1y —mm+d+ DD f, feC¥(Ss?. (4.5)

The proof of (4.5) foru = 0 was first communicated to us by M. Felten. The analogous
argument for general is as follows. Simple calculations show that, feg> 0, we have

oomu=1 and

(m—r)m+d+u+r)
Or+lmu = 1 Or,m,u (4.6)

_om(m+d+|p) —r(r+d+|ul) o
B r+1
Thisyields (4.4), via (4.2) and (4.1), firstfgr= p,, € £ ;. ,, and hence for all polynomials.

The identity (4.4) follows for allf € C¥*2(57) by a density argument, and (4.5) is obtained
by induction.

Fom. s 0<r < m.

For later use we also describe the spectral properties of the quasi—interp\alf,‘;lbﬁ he
following statement follows from Theorem A, Theorem 4, Lemma 1 and the fact that the
operators¥,, , andi{ ; , commute.

Lemma 4. Foralln, m, r € Np,0<r <n,the space§ ,, , are eigenspaces of the operator
M,(f,)l Namely for p,, € £ ., we have

MV(L;:,[)J pm = ;“](1’:271’# pm

with the eigenvalues

r

) 1 o¢m,
/Lr([,?n,,u = Yn.m.pu Z m ;'1 £
=0 \t ’

0 if m>n,
1 ifnzr>m, (4.7)
= 1 - 1 O¢mu . <
~ Vnmp Z WT ifr <m<n.
(=r+1 \€ .

5. Approximation order

In this section we study approximation properties of the quasi—interpmaﬁffg o<r
<n. Our first basic result is
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Lemma 5. Let f € C% (5%). ThenM,\), f — f asn — oo, uniformly ons?,

Proof. Using (2.8) and Lemma 2, we have

.1
MUV =Muyuf + > 7nMayUeuf),  feC¥ (S,

=1 (Z)

whereM, , is the usual Bernstein—Durrmeyer operator (2.1). This representation and the
contractivity property of\/,, , yield the estimate

1M f = FISIMupf — fII+ Z U e f
=0
with | - | = || - lsc the maximum norm o5 It is well known that||M,, ,f — fll — O
asn — oo for all continuous functions f. Sindg/ ¢ ., f1l, £ = 1, ..., r, are bounded, the

result follows. O

Before we discuss the approximation order for our quasi-interpolants, we establish the
following useful relation for the eigenvalueg), . For r = 0, this relation was proved
in Derriennic[11] and Berens et a[1] (for u = 0), Berens and X{2] (for 4 = 1), and
Ditzian[12]. For r > 0, this relation is new even in the one-dimensional case.

Lemma 6. For n, m, r € Ng, 0<r <n, the following difference equation holds true:

i(r) /,L(r) _ V+1 1 O-r+1m,uy )
n,m,u n—1,m,u n+d+|,u|( ) (r+1)' n,m,u

(5.1)

Proof. From (4.7), (2.2) and by simple calculations, we obtain

) 2 (r) _ : 0¢,m,u _yn,m,u Yn—1,mp
/ln,m”u /Ln 1mpu — 42(; £ i (Z) (nzl) j|
ay mu [ nm—m)Ym+d~+m-+ul) | Vemu
_Z i —Om+d+u) } %)
O'ém/,t (m—ﬂ)(m+d+|ll| +4) —m -0t Ynom,u
_Z (11— O +d+|ul) } ()

Eq. (4.6) yields

S0 e Tnmp Xr: C+D)er1mp _ Loemu
m = = g = e D) e |
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and an obvious cancellation gives (5.1)J

This lemma is the basis for a telescoping argument in order to find an error formula for
the quasi-interpolant. Eq. (5.1) implies

+1 n -1
MO oy g T U, i1 uM, 5.2
n,u f n—1,u f n+d+ lul \r + 1 r+1.utn,pu f ( )

for f € £, and, by density, for alf € L}, (5%). Note that the operator,), M,E’jl)#
andM, mapLL’,“(Sd) ontoP ,. SinceP , is finite dimensional, all operators in (5.2) are
bounded orLff)“(Sd). Moreover, for smooth functions we may interchange the differential
operator and the Bernstein—Durrmeyer operator again. This leads to our main result in this
section.

Theorem 5. If f € C¥*2(59), then

oo
) r+1 < V4
- M\ f = —_—
= Muwt Z;le+d+|u| r+1

f c C2r+2(Sd),

-1
) Mz,u(u r+1,uf)a (5.3)

where the infinite series converges absolutely and uniformlysanConsequentlyfor
1< p<oo, we have

Cran,
If =M fllp< (n3”nur+LMﬂu, (5.4)
r+1

where

oo

r+1 (rj—l)
Crdny:= Z T
S tHAEI (L)

-1, n— oo, (5.5)

for fixed r,d and .

Proof. Identity (5.3) follows from (5.2) and Lemma 5 by writing the left-hand side of (5.3) as
atelescoping series. By making use of the triangle inequality and the contractigity of

we obtain the absolute and uniform convergence of the series in (5.3), and also inequality
(5.4), where the constants, ;4 ,, are defined as in (5.5). For the reader’s convenience
we verify the asymptotic behavior of these constants. For this purpose, we introduce the
notations

: 2
ﬁd ::mm{l,L},
i n+1+d+ |yl
_ n+2
=max{l, — .
Pars { n+1+d+md
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We readily obtain that

t+1

\—\_ 5 £> 1a
BiwnStas |l Pan. "

and this gives

Cr,d,n,,u _ i r+1 ﬁ
r+ D) Jrd+lul i<o ot—1J

<ﬂd,n,,u r+1
=

The last series equals

> A L 1 d 1 1
Z 1_[ _1_[£+1_J :l_[n—l— - = n+1\ -’

Plar el [ R jmo =i e+ D)

The result limy_, o C;.4,,,, = 1 follows directly. [J

Inequality (5.4) is a so-called direct theorem of Jackson—Favard-type. Based on (5.3), we
are now able to complete the proof of Theorem 3.

Proof of Theorem 3.Identity (5.3) implies

(L) (f = Ml f) U v f
= (Crdn ,uur-l-l,ufn u"‘f‘lﬂf)

r+1 (r+1)
+[;+1 ‘+d+ |'u| ( ) (Me ,u(u r+1 ,uf) r+l,,uf)

with the constan€, 4 ., as in (5.5). The first term on the right-hand side converges to zero
asn — oo, by (5.5), and the second term converges to zero as well, since

00 1 n
Z L (r+1) (Me,u(u r+l,,uf) -Uu r+l,,uf) ‘

14
{=n+1 ttd+|ul (r-i-l)
im My U 1) = Ui flloo =0, f € CFH2(sY),

gcr,d,n,,u Sup”M/é,,u(u r+1,uf) - ur+1,uf||
{>n

and

This completes the proof of Theorem 3 for smobth [

We conclude the paper with a generalization of the direct and inverse theorem by Braess
and Schwali4, Theorem 3.3Jfor the Hilbert spaceH = LiH(Sd). This is an easier
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argument, and is based on Theorem 4 alone. Here we make use of the following Sobolev-
type semi-norm f|, , of integer order >0, where

00 00
1
|f|%,’u = E u L,uPms pm)u)H = E E al,m,,u<pma pm)wu
m=0 " m=0

andf =Y >, pm is the orthogonal decomposition as in Theorem A. The corresponding
smoothness spaces are given by

Hiy={f el (S)I1fleg<oofore=0,....k},  keN.

w

Theorem 6. Letk > ¢ >0 be integers.
(a) Directresult:For f € H ’; andn € Np, we have

k!
. 2 2
Ierg |f — plg”u < n Cn,k,0 |f|k_ﬂ’

P £!
— O¢mpu _ Oln+lu
wherec, k¢ = SUR, > 11 Gl = Temrin’

(b) Converse resulttorn € Ngandp € P ,,, we have

|
) o ,
|p|k,u < E dn,k,ﬁ |P|4,H,
whered, ¢ = MaX%,—o0._ » % _ Tknpu
o T Om,p Ol.n,u

Apparently, by inspection of (2.5), we obtain

okt = O (n72k=0) and  dyi =0 2%y,
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